307 research outputs found

    Capacity-achieving techniques in nonlinear channels

    Get PDF
    Many of the current optical transmission techniques were developed for linear communication channels and are constrained by the fibre nonlinearity. This paper discusses the potential for radically different approaches to signal transmission and processing based on using inherently nonlinear techniques

    Nonlinear Fourier Transform for Optical Data Processing and Transmission:Advances and Perspectives

    Get PDF
    The nonlinear Fourier transform is a transmission and signal processing technique that makes positive use of the Kerr nonlinearity in optical fibre channels. I will overview recent advances and some of challenges in this field

    All-optical signal regeneration by temporal slicing of nonlinearly flattened optical waveform

    Get PDF
    A novel all-optical time domain regeneration technique using nonlinear pulse broadening and flattening in normal dispersion fiber and subsequent temporal slicing by an amplitude modulator (or a device performing a similar function) is proposed. Substantial suppression of the timing jitter of jitter-degraded optical signals is demonstrated using the proposed approach

    Perturbative discrete-time multivariate fiber channel model with finite memory

    Get PDF
    We introduce a discrete-time fibre channel model that provides an accurate analytical description of signal-signal and signal-noise interference with memory defined by the interplay of nonlinearity and dispersion. Also the conditional pdf of signal distortion, which captures non-circular complex multivariate symbol interactions, is derived providing the necessary platform for the analysis of channel statistics and capacity estimations in fibre optic links

    Techniques for noise and nonlinear impairments compensation in CO-OFDM transmission

    Get PDF
    In this paper, we discuss recent advances in digital signal processing techniques for compensation of the laser phase noise and fiber nonlinearity impairments in coherent optical orthogonal frequency division multiplexing (CO-OFDM) transmission. For laser phase noise compensation, we focus on quasi-pilot-aided (QPA) and decision-directed-free blind (DDF-blind) phase noise compensation techniques. For fiber nonlinearity compensation, we discuss in details the principle and performance of the phase-conjugated pilots (PCP) scheme

    Nonlinear loop mirror-based all-optical signal processing in fiber-optic communications

    Get PDF
    All-optical data processing is expected to play a major role in future optical communications. The fiber nonlinear optical loop mirror (NOLM) is a valuable tool in optical signal processing applications. This paper presents an overview of our recent advances in developing NOLM-based all-optical processing techniques for application in fiber-optic communications. The use of in-line NOLMs as a general technique for all-optical passive 2R (reamplification, reshaping) regeneration of return-to-zero (RZ) on-off keyed signals in both high-speed, ultralong-distance transmission systems and terrestrial photonic networks is reviewed. In this context, a theoretical model enabling the description of the stable propagation of carrier pulses with periodic all-optical self-regeneration in fiber systems with in-line deployment of nonlinear optical devices is presented. A novel, simple pulse processing scheme using nonlinear broadening in normal dispersion fiber and loop mirror intensity filtering is described, and its employment is demonstrated as an optical decision element at a RZ receiver as well as an in-line device to realize a transmission technique of periodic all-optical RZ-nonreturn-to-zero-like format conversion. The important issue of phase-preserving regeneration of phase-encoded signals is also addressed by presenting a new design of NOLM based on distributed Raman amplification in the loop fiber. © 2008 Elsevier Inc. All rights reserved

    Sparse Identification for Nonlinear Optical communication systems

    Get PDF
    We have developed a low complexity machine learning based nonlinear impairment equalization scheme and demonstrated its successful performance in SDM transmission links achieving compensation of both inter- and intra- channel Kerr-based nonlinear effects. The method operates in one sample per symbol and in one computational step. It is adaptive, i.e. it does not require a knowledge of system parameters, and it is scalable to different power levels and modulation formats. The method can be straightforwardly expanded to multi-channel systems and to any other type of nonlinear impairment

    Generation of high-energy soliton-like pulses in 1.9–2.5 µ m spectral domain

    Get PDF
    Abstract: We experimentally demonstrate the generation of soliton-like pulses with 195–230 fs duration and energy up to 20 nJ in the spectral region of 1.9–2.5 µm directly from the Tm-doped all-fiber MOPA laser. The emerged Raman solitons generated directly in the fiber amplifier exhibit unusual dynamics and spectral properties forming a supercontinuum without conventional gaps between Stokes pulses. Namely, at the output powers above 2 W, in addition to conventional soliton spectral peaks beyond 2.3 μm, we observe high spectral density over an extended range of 1.95–2.23 μm corresponding to a coherent structure that to the best of our knowledge differs from any previously observed supercontinuum regimes. The average optical power of the fiber laser is at the 3-W level, whereas the estimated peak power reached the 80-kW level. Such a relatively simple laser system with high spectral density is a promising light source for various applications ranging from advanced comb spectroscopy to ultra-fast photonics

    Bandwidth programmable optical Nyquist pulse generation in passively mode-locked fiber laser

    Get PDF
    We propose and numerically demonstrate a novel simple method to produce optical Nyquist pulses based on pulse shaping in a passively mode-locked fiber laser with an in-cavity flat-top spectral filter. The proposed scheme takes advantage of the nonlinear in-cavity dynamics of the laser and offers the possibility to generate high-quality sinc-shaped pulses with widely tunable bandwidth directly from the laser oscillator. We also show that the use of a filter with a corrective convex profile relaxes the need for large nonlinear phase accumulation in the cavity by offsetting the concavity of the nonlinearly broadened pulse spectrum

    Information theory analysis of regenerative channels

    Get PDF
    In this paper we summarize our recently proposed work on the information theory analysis of regenerative channels. We discuss how the design and the transfer function properties of the regenerator affect the noise statistics and enable Shannon capacities higher than that of the corresponding linear channels (in the absence of regeneration)
    • …
    corecore